
Problem Set 15 Solutions (Chapter 15)

Problem 15.1

Evaluate a Taylor expansion of equation (15.6) around V = 0.
Solution: Equation (15.6) from the document (page 3 [cite: 34]) relates the pair binding energy E

to the interaction potential V :
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)
where NF is the density of states at the Fermi energy EF , and Ec is the cutoff energy. Let ∆E = 2EF −E
be the binding energy (the amount E is below the energy of two non-interacting electrons at the Fermi
level). The equation becomes:
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Rearranging for ∆E:
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)
e2/(NFV ) = 1 +

2Ec
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∆E =
2Ec

e2/(NFV ) − 1

We are asked for an expansion around V = 0. Let’s consider the behavior for small positive V . In this
case, V → 0+, the exponent 2/(NFV ) becomes very large and positive. Therefore, e2/(NFV ) ≫ 1. The
expression for ∆E can be approximated as:

∆E ≈ 2Ec

e2/(NFV )
= 2Ece

−2/(NFV )

Substituting back E = 2EF −∆E:

E ≈ 2EF − 2Ece
−2/(NFV )

This expression shows the energy E for small V . It demonstrates that for any attractive potential
(V > 0), no matter how small, there is a bound state (E < 2EF ). A direct Taylor series expansion in
powers of V around V = 0 is not possible because the function e−k/V has an essential singularity at
V = 0. The derived expression E ≈ 2EF − 2Ece

−2/(NFV ) is the appropriate description for small V ,
showing the non-analytic dependence on the coupling constant V . This result itself is derived on page
3[cite: 34].

Problem 15.2

Problem 8.5 showed that for a Kibble balance the current I measured in the dynamic phase and the
voltage V measured in the static phase are related to the mass m, gravitational constant g, and velocity
v by IV = mgv. Using the inverse AC Josephson effect (equation 15.25) to determine the voltage, and
the quantum Hall effect (equation 14.41) along with the inverse AC Josephson effect to determine the
current, relate the measurement to fundamental constant(s).

Solution: The Kibble balance equation is given as IV = mgv[cite: 268]. The voltage V is measured
using the inverse AC Josephson effect (page 6, Eq. 15.25 [cite: 65, 268]):

V = n
h

2e
f

where n is an integer, h is Planck’s constant, e is the elementary charge, and f is the frequency of the
microwaves applied to the Josephson junction array.

The current I is measured by comparing the voltage drop VR = IR across a standard resistor R to
the Josephson voltage standard. The resistance R itself is calibrated using the quantum Hall effect. The
quantum Hall resistance is given by (from Chapter 14, Eq. 14.41, cited on page 22 [cite: 268]):

RH =
1

i

h

e2
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where i is an integer (or fraction in FQHE). A standard resistor R is calibrated against RH , so R =
rRH = r

i
h
e2 , where r is a calibration ratio (ideally an integer or simple rational number for precision).

The voltage drop VR = IR is measured by comparison with a Josephson voltage:

VR = n′ h

2e
f ′

where n′ is another integer and f ′ is another frequency. Therefore,
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Now substitute the expressions for I and V into the Kibble balance equation IV = mgv:(
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)
= mgv

nn′i

4r
hff ′ = mgv

This equation relates the macroscopic measurement mgv to the fundamental constant h (Planck’s con-
stant) and experimentally controlled frequencies (f, f ′) and velocity (v), along with integers (n, n′, i)
and the calibration factor (r). Since e cancels out, the measurement primarily links mass to Planck’s
constant. This relationship forms the basis for the redefinition of the kilogram by fixing the value of h.

Problem 15.3

If a SQUID with an area of A = 1 cm2 can detect 1 flux quantum, how far away can it sense the field
from a wire carrying 1 A?

Solution: A SQUID (Superconducting Quantum Interference Device) can detect extremely small
magnetic fluxes. The quantum of magnetic flux is given by Equation (15.27) (page 6 [cite: 73]):

Φ0 =
hc

2e
= 2.07× 10−7 G · cm2

We need to convert this to SI units (Tesla meter2, or Weber): 1T = 104 G and 1m2 = 104 cm2.

Φ0 = (2.07× 10−7 G · cm2)× 1T

104 G
× 1m2

104 cm2
= 2.07× 10−15 T ·m2 = 2.07× 10−15 Wb

The SQUID has an area A = 1 cm2 = 1 × 10−4 m2[cite: 269]. The minimum detectable flux is Φmin =
1× Φ0 = 2.07× 10−15 Wb. Assuming the magnetic field B is perpendicular to the SQUID loop area A,
the minimum detectable magnetic field Bmin is:

Bmin =
Φmin

A
=

2.07× 10−15 T ·m2

1× 10−4 m2
= 2.07× 10−11 T

The magnetic field B produced by a long straight wire carrying a current I at a distance r is given by
Ampere’s Law:

B =
µ0I

2πr

where µ0 = 4π× 10−7 T·m/A is the permeability of free space. We want to find the distance r at which
the field from a wire carrying I = 1 A equals Bmin:

Bmin =
µ0I

2πr

r =
µ0I

2πBmin

r =
(4π × 10−7 T ·m/A)× (1A)

2π × (2.07× 10−11 T)

r =
2× 10−7

m ≈ 9662mSo, theSQUIDcansensethefieldfroma1Awirefromadistanceofapproximately9.7 km.
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Problem 15.4

Typical parameters for a quartz resonator are Ce = 5pF , Cm = 20fF, Lm = 3mH, Rm = 6Ω. Plot, and
explain, the dependence of the reactance (imaginary part of the impedance), resistance (real part), and
the phase angle of the impedance on the frequency.

Solution: The equivalent circuit for the piezoelectric resonator is given in Figure 15.4 (page 14 [cite:
150]). It consists of a static capacitance Ce in parallel with a motional arm comprising Rm, Lm, and Cm

in series. The component values are Ce = 5pF, Cm = 20 fF, Lm = 3mH, and Rm = 6Ω[cite: 270].
The impedance of the motional arm (Zm) and the electrical capacitance (Ze) are:

Zm = Rm + j

(
ωLm − 1

ωCm

)
= Rm + jXm

Ze =
1

jωCe
= −j

1

ωCe

The total impedance Ztotal is the parallel combination:

Ztotal =
ZmZe

Zm + Ze
=

(Rm + jXm)(−j/(ωCe))

Rm + j(Xm − 1/(ωCe))

We can analyze the behavior around the series resonance frequency ωs and the parallel resonance (an-
tiresonance) frequency ωp.

1. Series Resonance Frequency (ωs): This occurs when the reactance of the motional arm is zero
(Xm = 0).

ωs =
1√

LmCm

=
1√

(3× 10−3 H)(20× 10−15 F)
=

1√
60× 10−18 s2

≈ 1.291× 108 rad/s

fs =
ωs

2π
≈ 20.55MHz

At ωs, Zm = Rm = 6Ω. The total impedance is Ztotal(ωs) =
RmZe

Rm+Ze
. Since Rm is very small compared

to |Ze| at this frequency (|Ze| = 1/(ωsCe) ≈ 1540Ω), the total impedance Ztotal(ωs) is very low, close
to Rm, and slightly capacitive. The resistance R = Re(Ztotal) reaches its minimum value near ωs. The
reactance X = Im(Ztotal) is small and negative. The phase angle ϕ = arctan(X/R) is close to 0◦ (slightly
negative).

2. Parallel Resonance Frequency (ωp): This occurs when the total impedance is maximum
(ideally infinite for Rm = 0). It happens slightly above ωs. The approximate frequency is given by
ωp ≈ ωs

√
1 + Cm/Ce.

Cm

Ce
=

20× 10−15 F

5× 10−12 F
= 0.004

ωp ≈ ωs

√
1 + 0.004 ≈ 1.002ωs ≈ 1.294× 108 rad/s

fp =
ωp

2π
≈ 20.59MHz

Near ωp, the reactance of the inductive motional arm (Xm > 0) nearly cancels the reactance of Ce.
The total impedance Ztotal(ωp) becomes very high and largely resistive. The resistance R reaches its
maximum value near ωp. The reactance X crosses zero from positive to negative at ωp. The phase angle
ϕ passes through 0◦ at ωp.

Frequency Dependence Summary:

• Resistance (R = Re(Ztotal)): Starts high at low frequencies (dominated by Ce), drops to a sharp
minimum near ωs (value close to Rm), rises rapidly to a very sharp maximum near ωp, and then
decreases again, approaching zero at high frequencies.

• Reactance (X = Im(Ztotal)): Starts large and negative (capacitive) at low frequencies (domi-
nated by Ce). Becomes less negative, passes through a small negative value near ωs. Rises sharply,
becoming large and positive (inductive) between ωs and ωp. Crosses zero at ωp. Becomes large and
negative (capacitive) again above ωp, approaching the reactance of Ce at very high frequencies.

• Phase Angle (ϕ = arctan(X/R)): Starts near −90◦ at low frequencies. Rises towards 0◦ near
ωs. Quickly rises to near +90◦ between ωs and ωp. Passes through 0◦ at ωp. Drops rapidly back
towards −90◦ above ωp.

3



The region between fs and fp is characterized by inductive behavior and rapidly changing phase, which is
exploited in oscillator circuits[cite: 154]. The high quality factor Q = (ωsLm)/Rm ≈ (1.29× 108 rad/s×
3× 10−3 H)/6Ω ≈ 64500 ensures the resonances are extremely sharp.

Problem 15.5

If a ship traveling on the equator uses one of John Harrison’s chronometers to navigate, what is the error
in its position after one month? What if it uses a cesium beam atomic clock?

Solution: Longitude determination requires accurate timekeeping. An error in time ∆t leads to an
error in longitude (position) ∆x. For a ship on the equator:

• Earth’s equatorial radius RE ≈ 6378 km.

• Equatorial circumference C = 2πRE ≈ 40 075 km.

• Earth’s rotational period T = 1day = 86 400 s.

• Speed of a point on the equator v = C/T = 40 075 km/86 400 s ≈ 0.4638 km/s = 463.8m/s.

• Position error ∆x = v ×∆t.

We need to calculate the total time error ∆t after one month (approximately 30 days) for each clock.
1. John Harrison’s Chronometer: The text mentions Harrison’s chronometer was good to better

than 1 s/day[cite: 221]. Let’s assume an error rate of δtH/day = 1 s/day. Total time error over 30 days:

∆tH = (1 s/day)× 30 days = 30 s

Position error:
∆xH = v ×∆tH = (463.8m/s)× (30 s) = 13 914m ≈ 13.9 km

The position error after one month using Harrison’s chronometer could be around 14 km.
2. Cesium Beam Atomic Clock: The relative uncertainty (instability) of a cesium beam clock is

δt/t ≈ 10−12[cite: 198]. Duration t = 30days = 30 × 86 400 s = 2.592 × 106 s. Total time error over 30
days:

∆tCs = (δt/t)× t = 10−12 × (2.592× 106 s) = 2.592× 10−6 s

Position error:

∆xCs = v ×∆tCs = (463.8m/s)× (2.592× 10−6 s) ≈ 1.20× 10−3 m = 1.2mm

The position error after one month using a cesium atomic clock is negligible for navigation purposes,
about 1.2mm.

Problem 15.6

GPS satellites orbit at an altitude of 20 180 km. (a) How fast do they travel? (b) What is their orbital
period? (c) Estimate the special-relativistic correction over one orbit between a clock on a GPS satellite
and one on the Earth. Which clock goes slower? (d) What is the general-relativistic correction over one
orbit? Which clock goes slower?

Solution: Given:

• Altitude h = 20 180 km [cite: 272]

• Earth’s radius RE ≈ 6378 km

• Orbital radius r = RE + h = 6378 km + 20 180 km = 26 558 km = 2.6558× 107 m

• Earth’s mass ME = 5.972× 1024 kg

• Gravitational constant G = 6.674× 10−11 N ·m2/kg2

• Speed of light c = 3× 108 m/s
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(a) Satellite Speed (v): For a circular orbit, gravity provides the centripetal force: GMEm
r2 = mv2

r .

v2 =
GME

r
=

(6.674× 10−11 N ·m2/kg2)(5.972× 1024 kg)

2.6558× 107 m
≈ 1.500× 107 m2/s2

v =
√
1.500× 107 m2/s2 ≈ 3873m/s ≈ 3.87 km/s

The satellites travel at approximately 3.87 km/s[cite: 273].
(b) Orbital Period (T ):

T =
2πr

v
=

2π(2.6558× 107 m)

3873m/s
≈ 43 075 s

Converting to hours: T ≈ 43 075 s/(3600 s/hr) ≈ 11.97 hours. This is approximately half a sidereal day,
the actual orbital period for GPS satellites[cite: 273].

(c) Special Relativistic Correction: Due to its velocity, the satellite’s clock experiences time
dilation relative to a stationary clock at the same gravitational potential. The satellite clock runs slower

(Equation 15.55 [cite: 206]). The fractional difference in clock rate is ∆f/f ≈ − 1
2
v2

c2 .

v2

c2
=

1.500× 107 m2/s2

(3× 108 m/s)2
=

1.500× 107

≈ 1.667×10−10 ∆f
f ≈ − 1

2 (1.667×10−10 ) ≈ −8.335×10−11 Thenegativesignindicatesthesatelliteclockisslower.T imedifferenceoveroneorbit(T

= 43 075 s) :∆tSR =
∣∣∣∆f

f

∣∣∣×T = (8.335×10−11 )×(43 075 s) ≈ 3.59×10−6 s = 3.59 µsDuetospecialrelativity, thesatelliteclockrunsslowerbyabout3.59 µsperorbitcomparedtoahypotheticalstationaryclockatthesatellite′saltitude[cite :

275].
(d) General Relativistic Correction: Clocks run slower in stronger gravitational fields (closer to

Earth). The satellite is in a weaker field than a clock on Earth’s surface. Therefore, the satellite clock
runs faster due to general relativity (Equation 15.59 [cite: 215]). The fractional frequency difference due
to gravitational potential ϕ = −GM/r is ∆f/f ≈ −(ϕsat−ϕEarth)/c

2 = (GME/(REc
2))−(GME/(rc

2)).

GME

REc2
=

(6.674× 10−11 )(5.972× 1024 )

(6.378× 106 )(3× 108 )
2 ≈ 6.95× 10−10

GME

rc2 = (6.674×10−11 )(5.972×1024 )

(2.6558×107 )(3×108 )2
≈ 1.67 × 10−10 Fractionaldifference :∆f

f ≈ 6.95 × 10−10 −1.67 ×
10−10 =5.28×10−10 Thepositivesignindicatesthesatelliteclockrunsfaster.T imedifferenceoveroneorbit(T

= 43 075 s) :∆tGR =
(

∆f
f

)
×T = (5.28×10−10 )×(43 075 s) ≈ 2.27×10−5 s = 22.7 µsDuetogeneralrelativity, thesatelliteclockrunsfasterbyabout22.7 µsperorbitcomparedtoaclockonEarth′ssurface[cite :

275].
Net Effect: The general relativistic effect (faster clock) dominates the special relativistic effect

(slower clock). The net effect is that the satellite clock runs faster than an Earth-based clock by ap-
proximately 22.7 µs− 3.59 µs ≈ 19.1µs per orbit. This corresponds to about 38 µs per day, a correction
essential for GPS accuracy[cite: 218, 247].
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